36,015 research outputs found

    Aging dynamics of ferromagnetic and reentrant spin glass phases in stage-2 Cu0.80_{0.80}C0.20_{0.20}Cl2_{2} graphite intercalation compound

    Full text link
    Aging dynamics of a reentrant ferromagnet stage-2 Cu0.8_{0.8}Co0.2_{0.2}Cl2_{2} graphite intercalation compound has been studied using DC magnetic susceptibility. This compound undergoes successive transitions at the transition temperatures TcT_{c} (≈8.7\approx 8.7 K) and TRSGT_{RSG} (≈3.3\approx 3.3 K). The relaxation rate SZFC(t)S_{ZFC}(t) exhibits a characteristic peak at tcrt_{cr} below TcT_{c}. The peak time tcrt_{cr} as a function of temperature TT shows a local maximum around 5.5 K, reflecting a frustrated nature of the ferromagnetic phase. It drastically increases with decreasing temperature below TRSGT_{RSG}. The spin configuration imprinted at the stop and wait process at a stop temperature TsT_{s} (<Tc<T_{c}) during the field-cooled aging protocol, becomes frozen on further cooling. On reheating, the memory of the aging at TsT_{s} is retrieved as an anomaly of the thermoremnant magnetization at TsT_{s}. These results indicate the occurrence of the aging phenomena in the ferromagnetic phase (TRSG<T<TcT_{RSG}<T<T_{c}) as well as in the reentrant spin glass phase (T<TRSGT<T_{RSG}).Comment: 9 pages, 9 figures; submitted to Physical Review

    Transverse momentum distribution with radial flow in relativistic diffusion model

    Get PDF
    Large transverse momentum distributions of identified particles observed at RHIC are analyzed by a relativistic stochastic model in the three dimensional (non-Euclidean) rapidity space. A distribution function obtained from the model is Gaussian-like in radial rapidity. It can well describe observed transverse momentum pTp_T distributions. Estimation of radial flow is made from the analysis of pTp_T distributions for pˉ\bar{p} in Au + Au Collisions. Temperatures are estimated from observed large pTp_T distributions under the assumption that the distribution function approaches to the Maxwell-Boltzmann distribution in the lower momentum limit. Power-law behavior of large pTp_T distribution is also derived from the model.Comment: 7 pages, 5 figures and 6 table

    Analysis of Cumulant Moments in High Energy Hadron-Hadron Collisions by Truncated Multiplicity Distributions

    Get PDF
    Oscillatory behavior of cumulant moments obtained from the experimental data in pppp collisions and pˉp\bar{p}p collisions are analyzed by the modified negative binomial distribution (MNBD) and the negative binomial distribution (NBD). Both distributions well describe the cumulant moments obtained from the data. This fact shows sharp contrast to the result in e+e−e^+e^- collisions, which is described by the the MNBD much better than by the NBD.Comment: 7 pages, Latex type, 7 figure

    Development of Cu-spin correlation in Bi_1.74_Pb_0.38_Sr_1.88_Cu_1-y_Zn_y_O_6+d_ high-temperature superconductors observed by muon spin relaxation

    Full text link
    A systematic muon-spin-relaxation study in Bi-2201 high-Tc cuprates has revealed for the first time that the Cu-spin correlation (CSC) is developed at low temperatures below 2 K in a wide range of hole concentration where superconductivity appears. The CSC tends to become weak gradually with increasing hole-concentration. Moreover, CSC has been enhanced through the 3% substitution of Zn for Cu. These results are quite similar to those observed in La-214 high-Tc cuprates. Accordingly, it has been suggested that the intimate relation between the so-called spin-charge stripe correlations and superconductivity is a universal feature in hole-doped high-Tc cuprates. Furthermore, apparent development of CSC, which is suppressed through the Zn substitution oppositely, has been observed in non-superconducting heavily overdoped samples, being argued in the context of a recently proposed ferromagnetic state in heavily overdoped cuprates.Comment: 6 pages, 5 figure

    Hole-trapping by Ni, Kondo effect and electronic phase diagram in non-superconducting Ni-substituted La2-xSrxCu1-yNiyO4

    Full text link
    In order to investigate the electronic state in the normal state of high-Tc cuprates in a wide range of temperature and hole-concentration, specific-heat, electrical-resistivity, magnetization and muon-spin-relaxation (muSR) measurements have been performed in non-superconducting Ni-substituted La2-xSrxCu1-yNiyO4 where the superconductivity is suppressed through the partial substitution of Ni for Cu without disturbing the Cu-spin correlation in the CuO2 plane so much. In the underdoped regime, it has been found that there exist both weakly localized holes around Ni and itinerant holes at high temperatures. With decreasing temperature, all holes tend to be localized, followed by the occurrence of variable-range hopping conduction at low temperatures. Finally, in the ground state, it has been found that each Ni2+ ion traps a hole strongly and that a magnetically ordered state appears. In the overdoped regime, on the other hand, it has been found that a Kondo-like state is formed around each Ni2+ spin at low temperatures. In conclusion, the ground state of non-superconducting La2-xSrxCu1-yNiyO4 changes upon hole doping from a magnetically ordered state with the strong hole-trapping by Ni2+ to a metallic state with Kondo-like behavior due to Ni2+ spins, and the quantum phase transition is crossover-like due to the phase separation into short-range magnetically ordered and metallic regions.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.

    Modified Reconstruction of Standard Model in Non-Commutative Differential Geometry

    Full text link
    Sogami recently proposed the new idea to express Higgs particle as a kind of gauge particle by prescribing the generalized covariant derivative with gauge and Higgs fields operating on quark and lepton fields. The field strengths for both the gauge and Higgs fields are defined by the commutators of the covariant derivative by which he could obtain the Yang-Mills Higgs Lagrangian in the standard model. Inspired by Sogami's work, we present a modification of our previous scheme to formulate the spontaneously broken gauge theory in non-commutative geometry on the discrete space; Minkowski space multiplied by two points space by introducing the generation mixing matrix in operation of the generalized derivative on the more fundamental fields a_i(x,y) which compose the gauge and Higgs fields. The standard model is reconstructed according to the modified scheme, which does not yields not only any special relations between the particle masses but also the special restriction on the Higgs potential.Comment: 21 page
    • …
    corecore